
OC Problem Set 3

Friday, May 15, 2015.

Problem 1: Incident, transmitted, reflected, and standing TE-waves

A monochromatic, plane TE-wave \vec{E}_1 as depicted on the right-hand side is incident *perpendicularly* onto the boundary plane x=0 which separates medium 1 (x<0) from medium 2 (x>0). Both media are non-magnetic and non-conducting. The dielectric constants of medium 1 and medium 2 are n_1 and n_2 respectively.

a) Which Cartesian field components make up the incident TE-wave \vec{E}_1 ? Which components make up the propagation vector \vec{k}_1 of \vec{E}_1 ?

Write down the total electric field in medium 1 using complex notation! Observe that it is a superposition of incident wave \vec{E}_1 and reflected wave \vec{E}_3 .

What is the relation between \vec{k}_3 of the reflected and \vec{k}_1 of the incident wave?

Is the superposition of \vec{E}_1 and \vec{E}_3 a standing wave, or a propagating wave, or what else? Write down the electric field \vec{E}_2 of the transmitted wave in complex notation. What type of wave is it?

b) The relation between the electric field \vec{E}_s and the magnetic field \vec{H}_s (s = 1, 2, 3) will be determined next:

Apply Maxwell's equation $\operatorname{curl} \vec{E}_s = -j\omega\mu_0 \vec{H}_s$ to the electric field \vec{E}_s of part a) and show that with the transverse field components the transverse wave impedance Z_s can be defined: $H_s = E_s/Z_s$.

Write Z_1 , Z_2 , and Z_3 as a function of n_1 and n_2 . **Hint:** $k = nk_0 = n\frac{\omega}{c}$.

In the following, the amplitude reflection coefficient r_E of the electric field at the boundary x = 0 will be determined for the case of perpendicular incidence as a function of the transverse wave impedances Z_1 and Z_2 , or the refractive indices n_1 and n_2 , respectively. The reflection coefficient r_E is defined as the amplitude ratio of the reflected wave and the incident wave: $r_E = E_3/E_1$.

- c) Formulate the boundary conditions at x=0 for the electric and magnetic field components.
- d) Use the boundary conditions of part c) to determine the amplitude reflection coefficient r_E as a function of Z_1 and Z_2 , or as a function of n_1 and n_2 , respectively.
- e) Which reflection coefficients result for the cases $n_2 \gg n_1$ and $n_2 \ll n_1$? For both cases, plot the amplitude of the electric field in medium 1 (x < 0). **Hint:** Take the real part of the superposition of incident wave \vec{E}_1 and reflected wave \vec{E}_3 from part a).
- f) For those of you interested in transmission line theory, How would you call these cases in terms of a transmission line (short circuit / open circuit)? (This part is optional)

For questions and suggestions on the OC tutorial please contact:

Stefan Wolf, Bldg. 30.10, Room 1.23, Phone: 0721/608-47173, <u>s.wolf@kit.edu</u> Wladick Hartman, Room 2.23, Phone: 0721/608-48954, <u>wladislaw.hartmann@kit.edu</u>